Myocardial Motion and Deformation Analysis from Echocardiograms
نویسنده
چکیده
Echocardiography is a widely used imaging technique to examine myocardial function in patients with known or suspected heart disease. The analysis of ventricular wall motion and deformation, in particular, allows to assess the extent of myocardial ischemia and infarction. In clinical practice, the analysis mainly relies on visual inspection or manual measurements by experienced cardiologists. Manual methods are tedious and time-consuming, and visual assessment leads to qualitative and subjective diagnoses that suffer from considerable interand intraobserver variability. Automating the analysis of echocardiographic images is therefore highly desirable but also challenging because of the low image quality and the high amount of speckle noise. In this thesis, we propose a framework for robust and quantitative analysis of echocardiographic sequences. We make the following key contributions: Motion and Deformation Analysis—We propose a novel optical-flow-based algorithm to estimate ventricular wall motion from B-mode echocardiograms. To account for typical heart motions such as contraction/expansion and shear, we use a local affine model for the velocity in space and time. An attractive feature of the affine motion model is that it gives also access to local strain rate parameters that describe local myocardial deformation such as wall thickening. The motion parameters are estimated in the least-squares sense within a sliding spatio-temporal B-spline window. The estimation of large motions is made possible through the use of a coarse-to-fine multi-scale strategy, which also adds robustness to the method. Computational Efficiency—We introduce the notion of multiresolution moment filters, a novel filtering scheme to compute local weighted geometric moments efficiently at dyadic scales by using a wavelet-like algorithm. Beyond their application in motion analysis, we demonstrate their usefulness for image denoising and feature extraction. Multi-Modality—We extend the proposed motion analysis algorithm by intei ii grating directional, Doppler-based velocity measurements. The exploitation of two ultrasound modalities, i.e., B-mode and tissue Doppler, renders the method more accurate and robust. Visualization—We display diagnostically meaningful motion data inside a user-defined region of interest that is tracked in time. Myocardial inward and outward motion is visualized by color coding the radial motion component with respect to the ventricular center. Two-dimensional strain rate information is superimposed in the form of deforming ellipses. The display allows a more intuitive and simplified identification of regions with abnormal motion patterns. Validation—The proposed method is validated on 1) synthetic data, 2) real ultrasound phantom data, and 3) clinical echocardiograms. A large-scale validation study that includes 114 patients confirms its ability to detect and quantify wall motion abnormalities.
منابع مشابه
Multiscale motion mapping: a novel computer vision technique for quantitative, objective echocardiographic motion measurement independent of Doppler: first clinical description and validation.
BACKGROUND Objective, quantitative, segmental noninvasive/bedside measurement of cardiac motion is highly desirable in cardiovascular medicine, but current technology suffers from significant drawbacks, such as subjectivity of conventional echocardiographic reading, angle dependence of tissue Doppler measurements, radiation exposure by computer tomography, and infrastructure requirements in MRI...
متن کاملTissue Doppler in Ischemic Heart Disease
Tissue Doppler Echocardiography was introduced in the 1960s (Yoshida et al., 1961), and enabled the quantitative assessment of myocardial motion and deformation. The wide use of tissue Doppler as a research tool halted, however, until the early 1990s (Hatle & Sutherland, 2000). Tissue Doppler is now available for high frame rates, wide sector angles and in combination with 2-dimiensional data a...
متن کاملA comparison of cardiac motion analysis software packages: application to left ventricular deformation analysis in healthy subjects
Background Feature tracking (FT) software packages measure myocardial wall motion deformation parameters through the cardiac cycle. Myocardial tagging technique is currently considered the gold standard for myocardial deformation measurements. This study compares 2 FT-software packages with a tagging software package and investigates the differences in strain deformation parameters measured in ...
متن کاملA comparison of cardiac motion analysis software packages: application to left ventricular deformation analysis in hypertensive patients
Background Although myocardial function is clinically assessed with global measurements (ventricular volumes, ejection fraction), recent research has shown that regional measurements, such as wall-thickening, strain, and torsion, could provide earlier sub-clinical markers to examine left ventricular (LV) dysfunction and myocardial diseases. Cardiovascular Magnetic Resonance myocardial feature t...
متن کاملMotion and deformation tracking for short-axis echo-planar myocardial perfusion imaging
The assessment of regional myocardial perfusion during the first-pass of a contrast agent bolus requires tracking of the signal time course for each myocardial segment so that a detailed perfusion map can be derived. To obtain such a map in practice, however, is not trivial because deformation of the shape of the myocardium and respiratory-induced motion render a major difficulty in this proces...
متن کامل